Domain-Invariant Feature Learning for Domain Adaptation

Author:

Tu Ching-Ting1,Lin Hsiau-Wen2,Lin Hwei Jen3ORCID,Tokuyama Yoshimasa4,Chu Chia-Hung3

Affiliation:

1. Department of Applied Mathematics, National Chung Hsing University, Taichung 401, Taiwan, R.O.C.

2. Department of Information Management, Chihlee University of Technology, Banqiao Dist., New Taipei City 220305, Taiwan, R.O.C.

3. Department of Computer Science and Information Engineering, Tamkang University, Tamsui Dist., New Taipei City 251, Taiwan, R.O.C.

4. Department of Media and Image Technology, Faculty of Engineering, Tokyo Polytechnic University, Tokyo 164-8678, Japan

Abstract

Unsupervised domain adaptation (UDA) mainly explores how to learn domain-invariant features from the source domain when the target domain label is unknown. To learn domain-invariant features requires aligning the distribution of samples from two domains in the feature space, which can be achieved by minimizing the maximum mean discrepancy (MMD) of samples from the two domains. However, there is still no effective way to find the best parameter values of MMD. Such a problem is addressed in the MMD with deep kernels (MMD-D), whose optimal parameters can be obtained through training. This study proposes a method of domain-invariant feature learning for UDA, whose architecture, named MMDDCDA, comprises an MMD-D module and a cross domain adaptation (CDA) module. MMDDCDA performs alternating training similar to adversarial training to alternately boost the power of the two modules. To our knowledge, this is the first UDA method that performs such alternating training on a UDA architecture using MMD with deep kernels. Experimental validation showed that the proposed method yields state-of-the-art results among UDA methods using other MMD variants and some UDA benchmarks.

Funder

National Science Council of Taiwan

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3