Latent Representation Prediction Networks

Author:

Hlynsson Hlynur David1,Schüler Merlin1,Schiewer Robin1,Glasmachers Tobias1,Wiskott Laurenz1

Affiliation:

1. Institut für Neuroinformatik, Ruhr-Universität Bochum, Bochum, Universitätsstraße 150, Bochum 44801, Germany

Abstract

Modern model-based reinforcement learning methods for high-dimensional inputs often incorporate an unsupervised learning step for dimensionality reduction. The training objective of these unsupervised learning methods often leverages only static inputs such as reconstructing observations. These representations are combined with predictor functions for simulating rollouts to navigate the environment. We advance this idea by taking advantage of the fact that we navigate dynamic environments with visual stimulus and create a representation that is specifically designed with control and actions in mind. We propose to learn a feature map that is maximally predictable for a predictor function. This results in representations that are well suited for the task of planning, where the predictor is used as a forward model. To this end, we introduce a new way of learning this representation along with the prediction function, a system we dub Latent Representation Prediction Network (LARP). The prediction function is used as a forward model for a search on a graph in a viewpoint-matching task, and the representation learned to maximize predictability is found to outperform other representations. The sample efficiency and overall performance of our approach are shown to rival standard reinforcement learning methods, and our learned representation transfers successfully to unseen environments.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3