Affiliation:
1. College of Computer Science and Information Technology, Guangxi Normal University, Guilin 541004, P. R. China
Abstract
Abnormal behavior detection in crowd scenes has received considerable attention in the field of public safety. Traditional motion models do not account for the continuity of motion characteristics between frames. In this paper, we present a new feature descriptor, called the hybrid optical flow histogram. By importing the concept of acceleration, our method can indicate the change of speed in different directions of a movement. Therefore, our descriptor contains more information on the movement. We also introduce a spatial and temporal region saliency determination method to extract the effective motion area only for samples, which could effectively reduce the computational costs, and we apply a sparse representation to detect abnormal behaviors via sparse reconstruction costs. Sparse representation has a high rate of recognition performance and stability. Experiments involving the UMN datasets and the videos taken by us show that our method can effectively identify various types of anomalies and that the recognition results are better than existing algorithms.
Funder
The National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献