DAGAN: A GAN Network for Image Denoising of Medical Images Using Deep Learning of Residual Attention Structures

Author:

Tong Guoxiang1ORCID,Hu Fangning1ORCID,Liu Hongjun1ORCID

Affiliation:

1. College of Opto-Electronic Information and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China

Abstract

Medical images are susceptible to noise and artifacts, so denoising becomes an essential pre-processing technique for further medical image processing stages. We propose a medical image denoising method based on dual-attention mechanism for generative adversarial networks (GANs). The method is based on a GAN model with fused residual structure and introduces a global skip-layer connection structure to balance the learning ability of the shallow and deep networks. The generative network uses a residual module containing channel and spatial attention for efficient extraction of CT image features. The mean square error loss and perceptual loss are introduced to construct a composite loss function to optimize the model loss function, which helps to improve the image generation effect of the model. Experimental results on the LUNA dataset and “the 2016 Low-Dose CT Grand Challenge” dataset show that DAGAN achieves the best results in root mean square error (RMSE), structural similarity (SSIM) and peak signal-to-noise ratio (PSNR) when compared to the state-of-the-art methods. In particular, PSNR reaches 31.2308 dB and 27.5265 dB, SSIM reaches 0.9115 and 0.7895, while RMSE is 0.0082 and 0.0112, respectively. This indicates that our method performs better than the state-of-the-art methods in the task of CT image denoising.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3