A Framework for Personalized Human Activity Recognition

Author:

Eri̇ş Hasan Ali1,Ertürk Mehmet Ali2,Aydın Muhammed Ali1

Affiliation:

1. Department of Computer Engineering, Istanbul University-Cerrahpaşa, Istanbul, Turkey

2. Department of Computer Engineering, Istanbul University, Fatih, 34452 Istanbul, Turkey

Abstract

In today’s world, Human Activity Recognition (HAR) through video streams is actively used in every aspect of our life, such as automated surveillance systems and sports statistics are computed according to the videos with the help of HAR. Activity detection is not a new subject, and several methods are available. However, the most recent and most promising techniques rely on Convolutional Neural Networks (CNNs). CNNs primary usage is based on a single image frame to perform logical or categorical identification of an object, scene, or activity. We exploit this feature to adapt CNN on video streams to achieve HAR. In this study, we present a Personalized HAR (PHAR) framework that increases activity recognition accuracy with Object Detection (OD). First, we demonstrate the state-of-the-art HAR and OD methods in the literature. Then we illustrate our framework with two new Single Person Human Activity Recognition models. Finally, the performance of the new framework is evaluated with the well-known activity detection methods. Results show that our new PHAR model with 95% accuracy ratio outperforms the CNN-LSTM-based reference model (90%). Moreover, a new metric Average Accuracy Score (AAS) is described in this study, PHAR models approximately have 94% AAS, which is better than the reference model with 89% AAS.

Funder

The Institute of Graduate Studies, Istanbul University-Cerrahpasa, Istanbul, Turkey.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3