Automatic Scale Parameters in Affinity Matrix Construction for Improved Spectral Clustering

Author:

Mohanavalli S.1,Jaisakthi S. M.1,Aravindan Chandrabose1

Affiliation:

1. SSN College of Engineering, Chennai, Tamilnadu, India

Abstract

Spectral clustering partitions data into similar groups in the eigenspace of the affinity matrix. The accuracy of the spectral clustering algorithm is affected by the affine equivariance realized in the translation of distance to similarity relationship. The similarity value computed as a Gaussian of the distance between data objects is sensitive to the scale factor [Formula: see text]. The value of [Formula: see text], a control parameter of drop in affinity value, is generally a fixed constant or determined by manual tuning. In this research work, [Formula: see text] is determined automatically from the distance values i.e. the similarity relationship that exists in the real data space. The affinity value of a data pair is determined as a location estimate of the spread of distance values of the data points with the other points. The scale factor [Formula: see text] corresponding to a data point [Formula: see text] is computed as the trimean of its distance vector and used in fixing the scale to compute the affinity matrix. Our proposed automatic scale parameter for spectral clustering resulted in a robust similarity matrix which is affine equivariant with the distance distribution and also eliminates the overhead of manual tuning to find the best [Formula: see text] value. The performance of spectral clustering using such affinity matrices was analyzed using UCI data sets and image databases. The obtained scores for NMI, ARI, Purity and F-score were observed to be equivalent to those of existing works and better for most of the data sets. The proposed scale factor was used in various state-of-the-art spectral clustering algorithms and it proves to perform well irrespective of the normalization operations applied in the algorithms. A comparison of clustering error rates obtained for various data sets across the algorithms shows that the proposed automatic scale factor is successful in clustering the data sets equivalent to that obtained using manually tuned best [Formula: see text] value. Thus the automatic scale factor proposed in this research work eliminates the need for exhaustive grid search for the best scale parameter that results in best clustering performance.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved Spectral Clustering Based on Density Combining DNA Genetic Algorithm;International Journal of Pattern Recognition and Artificial Intelligence;2017-02-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3