Affiliation:
1. College of Computer Science and Engineering, Chongqing University of Technology, Chongqing 400054, P. R. China
Abstract
As a meta-heuristic algorithm, the ant colony algorithm has been successfully used to solve various combinatorial optimization problems. However, the existing algorithm that takes the power of ants to solve distributed constraint optimization problems (ACO_DCOP) is easy to fall into local optima. To deal with this issue, this paper presents an adaptive ant colony algorithm based on local information entropy to solve distributed constraint optimization problems, named LIEAD. In LIEAD, the local information entropy is introduced to help agents adaptively select the pheromone update strategy and value selection strategy, which improves the convergence speed and the quality of the solution. Moreover, a restart mechanism is designed to break the accumulation state of pheromone, which increases the population diversity and helps the algorithm jump out of the local optima. The extensive experimental results indicate that LIEAD can significantly outperform ACO_DCOP and is competitive with the state-of-the-art DCOPs algorithms.
Funder
Youth Project of Science and Technology Research Program of Chongqing Education Commission of China
Chongqing Research Program of Basic Research and Frontier Technology
Postgraduate Innovation Project of Chongqing University of Technology
Scientific Research Foundation of Chongqing University of Technology
Publisher
World Scientific Pub Co Pte Ltd
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献