Multi-State Self-Learning Template Library Updating Approach for Multi-Camera Human Tracking in Complex Scenes

Author:

Liu Jian1,Hao Kuangrong1,Ding Yongsheng1,Yang Shiyu1,Gao Lei2

Affiliation:

1. Engineering Research Center of Digitized Textile & Apparel Technology, Ministry of Education, College of Information Science and Technology, Donghua University, Shanghai 201620, P. R. China

2. CSIRO, Private Mail Bag 2, Glen Osmond, SA 5064, Australia

Abstract

In multi-camera video tracking, the tracking scene and tracking-target appearance can become complex, and current tracking methods use entirely different databases and evaluation criteria. Herein, for the first time to our knowledge, we present a universally applicable template library updating approach for multi-camera human tracking called multi-state self-learning template library updating (RS-TLU), which can be applied in different multi-camera tracking algorithms. In RS-TLU, self-learning divides tracking results into three states, namely steady state, gradually changing state, and suddenly changing state, by using the similarity of objects with historical templates and instantaneous templates because every state requires a different decision strategy. Subsequently, the tracking results for each state are judged and learned with motion and occlusion information. Finally, the correct template is chosen in the robust template library. We investigate the effectiveness of the proposed method using three databases and 42 test videos, and calculate the number of false positives, false matches, and missing tracking targets. Experimental results demonstrate that, in comparison with the state-of-the-art algorithms for 15 complex scenes, our RS-TLU approach effectively improves the number of correct target templates and reduces the number of similar templates and error templates in the template library.

Funder

Key Project of the National Natural Science Foundation of China

National Natural Science Foundation of China

National Natural Science Funds Overseas and Hong Kong and Macao scholars

program for Changjiang Scholars from the Ministry of Education, Specialized Research Fund for Shanghai Leading Talents, Project of the Shanghai Committee of Science and Technology

Innovation Program of Shanghai Municipal Education Commission

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research Issues & State of the Art Challenges in Event Detection;2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM);2021-01-04

2. Classification of Fashion Article Images Based on Improved Random Forest and VGG-IE Algorithm;International Journal of Pattern Recognition and Artificial Intelligence;2019-07-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3