A SEQUENTIAL BAYESIAN ALGORITHM FOR SURVEILLANCE WITH NONOVERLAPPING CAMERAS

Author:

ZAJDEL WOJCIECH1,KRÖSE BEN J. A.1

Affiliation:

1. Intelligent Autonomous Systems, Informatics Institute, University of Amsterdam, The Netherlands

Abstract

Visual surveillance in wide areas (e.g. airports) relies on sparsely distributed cameras, that is, cameras that observe nonoverlapping scenes. In this setup, multiobject tracking requires reidentification of an object when it leaves one field of view, and later appears at some other. Although similar association problems are common for multiobject tracking scenarios, in the distributed case one has to cope with asynchronous observations and cannot assume smooth motion of the objects. In this paper, we propose a method for human indoor tracking. The method is based on a Dynamic Bayes Network (DBN) as a probabilistic model for the observations. The edges of the network define the correspondences between observations of the same object. Accordingly, we derive an approximate EM-like method for selecting the most likely structure of DBN and learning model parameters. The presented algorithm is tested on a collection of real-world observations gathered by a system of cameras in an office building.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Privacy-Preserving Indoor Localization via Active Scene Illumination;2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW);2018-06

2. Image and Video Analysis;Smart Camera Design;2017-11-29

3. Single authentication through in convergence space using collaborative smart cameras;Security and Communication Networks;2014-04-04

4. Distributed data association in smart camera networks using belief propagation;ACM Transactions on Sensor Networks;2014-01

5. ID Globalization Across Multiple Convergence Spaces Using Smart Cameras;Lecture Notes in Electrical Engineering;2012-11-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3