Airfoil Optimization of Land-Yacht Robot Based on Hybrid PSO and GA

Author:

Chen Jiqing1ORCID,Li Hengyu2

Affiliation:

1. College of Mechatronic Engineering, Guangxi University, Guangxi Manufacturing System and Advanced Manufacturing Technology Key Laboratory, No. 100, East University Road, Nanning, Guangxi, China

2. College of Mechatronic Engineering and Automation, Shanghai University, No. 99 Shangda Road, Baoshan District, Shanghai, China

Abstract

Airfoil optimization algorithm is studied and a hybrid PSO and GA method is proposed in this paper. After function test, it shows that algorithm is well in convergence performance, fast speed, and optimization capability. Then, the airfoil parametric expression theory is analyzed. A new airfoil is obtained after combining CFD and PSO-GA optimization. The aerodynamic of new airfoil is compared with the airfoil optimized by GA-PSO and basic airfoil NACA0018. The results indicate that new airfoil is better than the other two airfoils in lift coefficient, lift-drag ratio, and surface pressure. At last, wing-sail of new airfoil and NACA0018 wing-sail are designed and manufactured. Both of them are applied in land-yacht robot linear motion and steering motion experiment. For the linear motion, in the situation of wind speed being 15[Formula: see text]m/s and angle of attack being 5, running speed of robot with optimized new wing-sail is 1.853[Formula: see text]m/s. In steering motion, trajectory with new wing-sail is closer to the real situation and it gets more thrust. The experiments data verify that the simulation results are correct and PSO-GA algorithm is effective.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangxi

Guangxi Young Teacher Promotion Program

Guangxi Advanced Manufacturing Laboratory Project

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3