Particle Swarm Optimization Algorithm with Mutation Operator for Particle Filter Noise Reduction in Mechanical Fault Diagnosis

Author:

Chen Hanxin12ORCID,Fan Dong Liang1,Fang Lu1,Huang Wenjian1,Huang Jinmin1,Cao Chenghao1,Yang Liu1,He Yibin12,Zeng Li12

Affiliation:

1. School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430073, P. R. China

2. Hubei Provincial Key Laboratory of Chemical Equipment, Intensification and Intrinsic Safety, P. R. China

Abstract

In this paper, a new particle swarm optimization particle filter (NPSO-PF) algorithm is proposed, which is called particle cluster optimization particle filter algorithm with mutation operator, and is used for real-time filtering and noise reduction of nonlinear vibration signals. Because of its introduction of mutation operator, this algorithm overcomes the problem where by particle swarm optimization (PSO) algorithm easily falls into local optimal value, with a low calculation accuracy. At the same time, the distribution and diversity of particles in the sampling process are improved through the mutation operation. The defect of particle filter (PF) algorithm where the particles are poor and the utilization rate is not high is also solved. The mutation control function makes the particle set optimization process happen in the early and late stages, and improves the convergence speed of the particle set, which greatly reduces the running time of the whole algorithm. Simulation experiments show that compared with PF and PSO-PF algorithms, the proposed NPSO-PF algorithm has lower root mean square error, shorter running time, higher signal-to-noise ratio and more stable filtering performance. It is proved that the algorithm is suitable for real-time filtering and noise reduction processing of nonlinear signals.

Funder

the Ministry of Science and Technology of Hubei Province of China

Hubei Provincial Department of Education

the National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 110 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3