Affiliation:
1. Department of Computing, Hong Kong Polytechnic University, Hong Kong, China
Abstract
Scene analysis is so far one of the most important topics in machine vision. In this paper, we present an integrated scene analysis model, namely SCENOGRAM (Scene analysis using CompositENeural Oscillatory-based elastic GRAph Model). Basically the proposed scene analyzer is based on the integration of the composite neural oscillatory model with our elastic graph dynamic link model. The system involves: (1) multifrequency bands feature extraction scheme using Gabor filters, (2) automatic figure-ground object segmentation using a composite neural oscillatory model, and (3) object matching using an elastic graph dynamic link model. From the implementation point of view, we introduce an intelligent agent based scene analysis and object identification solution using the SCENOGRAM technology. From the experimental point of view, a scene gallery of over 6000 color scene images is used for automatic scene segmentation testing and object identification test. An overall correct invariant facial recognition rate of over 87% is attained. It is anticipated that the implementation of the SCENOGRAM can provide an invariant and higher-order intelligent object (pattern) encoding, searching and identification solution for future intelligent e-Business.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献