Numerical Feature Transformation-based Sequence Generation Model for Multi-disease Diagnosis

Author:

Yuan Ming1,Ren Jiangtao1

Affiliation:

1. School of Computer Science and Engineering, Guangdong Province Key Lab of Computational Science, Sun Yat-sen University Guangzhou, Guangdong, P. R. China

Abstract

The goal of computer-aided diagnosis is to predict patient’s diseases based on patient’s clinical data. The development of deep learning technology provides new help for clinical diagnosis. In this paper, we propose a new sequence generation model for multi-disease diagnosis prediction based on numerical feature transformation. Our model simultaneously uses patient’s laboratory test results and clinical text as input to diagnose and predict the disease that the patient may have. According to medical knowledge, our model can transform numerical features into descriptive text features, thereby enriching the semantic information of clinical texts. Besides, our model uses attention-based sequence generation methods to achieve the diagnosis of multiple diseases and better utilizes the correlation information between multiple diseases. We evaluate our model’s performance on a dataset of respiratory diseases from the real world, and experimental results show that our model’s accuracy reaches 42.75%, and the [Formula: see text] score reaches 65.65%, which is better than many other methods. It is suitable for the accurate diagnosis of multiple diseases.

Funder

National Key R&D Plan of China

Guangdong Province Key Laboratory of Computational Science at the Sun Yat-sen University

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3