Contributive Representation-Based Reconstruction for Online 3D Action Recognition

Author:

Tabejamaat Mohsen1,Mohammadzade Hoda1ORCID

Affiliation:

1. Department of Electrical Engineering, Sharif University of Technology, Tehran 11155-8639, Iran

Abstract

Recent years have seen an increasing trend in developing 3D action recognition methods. However, despite the advances, existing models still suffer from some major drawbacks including the lack of any provision for recognizing action sequences with some missing frames. This significantly hampers the applicability of these methods for online scenarios, where only an initial part of sequences are already provided. In this paper, we introduce a novel sequence-to-sequence representation-based algorithm in which a query sample is characterized using a collaborative frame representation of all the training sequences. This way, an optimal classifier is tailored for the existing frames of each query sample, making the model robust to the effect of missing frames in sequences (e.g. in online scenarios). Moreover, due to the collaborative nature of the representation, it implicitly handles the problem of varying styles during the course of activities. Experimental results on three publicly available databases, UTKinect, TST fall, and UTD-MHAD, respectively, show 95.48%, 90.91%, and 91.67% accuracy when using the beginning 75% portion of query sequences and 84.42%, 60.98%, and 87.27% accuracy for their initial 50%.

Funder

Iran National Science Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3