CONVERGENCE ANALYSIS OF A DISCRETE HOPFIELD NEURAL NETWORK WITH DELAY AND ITS APPLICATION TO KNOWLEDGE REFINEMENT

Author:

TSANG ERIC C. C.1,QIU S. S.2,YEUNG DANIEL S.1

Affiliation:

1. Department of Computing, The Hong Kong Polytechnic University, HungHom, Kowloon, Hong Kong

2. Department of Computing, College of Automation Science and Engineering, South China University of Technology, P. R. China

Abstract

This paper investigates the convergence theorems that are associated with a Discrete Hopfield Neural Network (DHNN) with delay. We present two updating rules, one for serial mode and the other for parallel mode. The speed of convergence of these proposed updating rules is faster than all of the existing updating rules. It has been proved in this paper that a DHNN with delay will converge to a stable state when operating in a serial mode if the matrix of weights of the no-delay term is symmetric. In addition, it has been proved that they will converge to a stable state when operating in a parallel mode if the matrix of weights of the no-delay term is a symmetric and non-negative definite matrix. The condition for convergence of a DHNN without delay can been relaxed from the need to have a symmetric matrix to an even weaker condition of having a quasi-symmetric matrix. The results in this paper extend both the existing results concerning the convergence of a DHNN without delay and our previous findings. By means of the new network structure and its convergence theorems, we propose a local searching algorithm for combinatorial optimization. We also relate the maximum value of a bivariate energy function to the stable states of a DHNN with delay, which generalizes Hopfield's energy function. Moreover, for the serial model we give the relationship between the convergence of the energy function and the convergence of the corresponding network. One application is presented to demonstrate the higher rate of convergence and the accuracy of the classification using our algorithm.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Geometric Regularized Hopfield Neural Network for Medical Image Enhancement;International Journal of Biomedical Imaging;2021-01-22

2. A New Approach of a Possibility Function Based Neural Network;Intelligent Mathematics II: Applied Mathematics and Approximation Theory;2016

3. Stability Criterion of Discrete Hopfield Neural Networks with Weighted Function Matrix and one-Delay;Advanced Materials Research;2011-07

4. Stability Criterion of Discrete Hopfield Neural Networks with Multiple Delays in Parallel Mode: Linear Matrix Inequality;Advanced Materials Research;2011-04

5. A limit cycle problems of BSB model with delay;2009 International Conference on Machine Learning and Cybernetics;2009-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3