Short-Term Time Wind Speed Forecasting Based on Spatio-Temporal Geostatistical Approach and Kriging Method

Author:

Wang Yu12,Zhu Changan1,Zhao Jianghai2,Wang Deji3ORCID

Affiliation:

1. Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Anhui 230026, P. R. China

2. Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230026, P. R. China

3. Staff Development Institute of CNTC, Zhengzhou 450000, P. R. China

Abstract

Short-term wind speed prediction is an essential task for wind resource and wind energy planning. However, most of this literature does not take into account the spatio-termporal correlation of wind data from the geographical field. For this reason, we propose an integrated spatio-temporal kriging and functional kriging strategy to exploit such spatio-temporal correlation into the wind speed prediction. First, the deterministic trend component in wind data is estimated to be removed. The residuals are used for spatio-temporal modeling and prediction. Based on the spatio-temporal kriging framework, four spatio-temporal covariance models (product-sum model, separable exponential product model, separable and nonseparable Gneiting models) are considered which describe the spatio-temporal correlation of wind data. In particular, the flexibility of using the nonseparable Gneiting model is highlighted. More specifically, four spatio-temporal random fields are modeled from the 12 wind monitoring stations over Ireland. We also use an involved weighted least squares method for estimating parameters of the four covariance models involved in the spatio-temporal kriging strategy. We apply the fitted covariance models to generate day-ahead wind speed predictions at both observed and nonobserved locations where wind station already exist but also to nearby locations. Leave-one-out cross-validation is applied to check the significance of the difference among the four models, these spatio-temporal ordinary kriging (STOK), functional ordinary kriging (FOK) and autoregressive integrated moving average (ARIMA) methods are compared for day-ahead wind speed predictions. Forecasting results indicate that the predicting accuracy is improved almost 33.5% using FOK compared with three approaches which confirm the effectiveness of the functional kriging method in the paper.

Funder

the Key Research and Development Plan of Jiangsu Province of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3