Soft Margin Triplet-Center Loss for Multi-View 3D Shape Retrieval

Author:

Cheng Ruting1ORCID,Wang Fuzhou1,Zhao Tianmeng1,Liu Hongmin1,Zeng Hui12

Affiliation:

1. Beijing Engineering Research Center of Industrial Spectrum Imaging, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China

2. Shunde Graduate School of University of Science and Technology Beijing, Foshan 528399, P. R. China

Abstract

Obtaining discriminative features is one of the key problems in three-dimensional (3D) shape retrieval. Recently, deep metric learning-based 3D shape retrieval methods have attracted the researchers’ attention and have achieved better performance. The triplet-center loss can learn more discriminative features than traditional classification loss, and it has been successfully used in deep metric learning-based 3D shape retrieval task. However, it has a hard margin parameter that only leverages part of the training data in each mini-batch. Moreover, the margin parameter is often determined by experience and remains unchanged during the training process. To overcome the above limitations, we propose the soft margin triplet-center loss, which replaces the margin with the nonparametric soft margin. Furthermore, we combined the proposed soft margin triplet-center loss with the softmax loss to improve the training efficiency and the retrieval performance. Extensive experimental results on two popular 3D shape retrieval datasets have validated the effectiveness of the soft margin triplet-center loss, and our proposed 3D shape retrieval method has achieved better performance than other state-of-the-art method.

Funder

national natural science foundation of china

natural science foundation of jilin province

fundamental research funds for the central universities

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MVSE-Net: A Multi-View Deep Network With Semantic Embedding for LiDAR Place Recognition;IEEE Transactions on Intelligent Transportation Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3