Generating High-Quality Air-Coupled Ultrasonic Images for Wooden Material Characterization by Single Image Super-Resolution

Author:

Lin Lujun1,Fang Yiming23ORCID,Du Xiaochen24,Zhou Zhu24

Affiliation:

1. Jiyang College of Zhejiang A & F University, Shaoxing 311800, P. R. China

2. Information Engineering College, Zhejiang A & F University, Hangzhou 311300, P. R. China

3. Suncha Bamboo & Wood Technology Co. Ltd., Lishui 323899, P. R. China

4. Zhejiang Provincial Key Laboratory of Forestry, Intelligent Monitoring and Information Technology, Zhejiang A & F University, Hangzhou 311300, P. R. China

Abstract

As the practical applications in other fields, high-resolution images are usually expected to provide a more accurate assessment for the air-coupled ultrasonic (ACU) characterization of wooden materials. This paper investigated the feasibility of applying single image super-resolution (SISR) methods to recover high-quality ACU images from the raw observations that were constructed directly by the on-the-shelf ACU scanners. Four state-of-the-art SISR methods were applied to the low-resolution ACU images of wood products. The reconstructed images were evaluated by visual assessment and objective image quality metrics, including peak signal-to-noise-ratio and structural similarity. Both qualitative and quantitative evaluations indicated that the substantial improvement of image quality can be yielded. The results of the experiments demonstrated the superior performance and high reproducibility of the method for generating high-quality ACU images. Sparse coding based super-resolution and super-resolution convolutional neural network (SRCNN) significantly outperformed other algorithms. SRCNN has the potential to act as an effective tool to generate higher resolution ACU images due to its flexibility.

Funder

Zhejiang Provincial Science and Technology Department

Postdoctoral Science Foundation of Zhejiang Province

Zhejiang Provincial Education Department

foundation from Development Program of Zhejiang A & F University

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3