INTENT RECOGNITION IN MULTI-AGENT SYSTEMS: COW HERDING

Author:

AHMAD NAJLA1,AGAH ARVIN1

Affiliation:

1. Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS 66045-7621, USA

Abstract

In a multi-agent system, an agent may utilize its idle time to assist other agents in the system. Intent recognition is proposed to accomplish this with minimal communication. An agent performing recognition observes the tasks other agents are performing and, unlike the much studied field of plan recognition, the overall intent of an agent is recognized instead of a specific plan. The observing agent may use capabilities that it has not observed. A conceptual framework is proposed for intent recognition systems. An implementation of the conceptual framework is tested and evaluated. We hypothesize that using intent recognition in a multi-agent system increases utility (where utility is domain specific) and decreases the amount of communication. We test our hypotheses using the domain of Cow Herding, where agents attempt to herd cow agents into team corrals. A set of metrics, including task time and number of communications, is used to compare the performance of plan recognition and intent recognition. In our results, we find that intent recognition agents communicate fewer times than plan recognition agents. In addition, unlike plan recognition, when agents use the novel approach of intent recognition, they select unobserved actions to perform. Intent recognition agents were also able to outperform plan recognition agents by consistently scoring more points in the Cow Herding domain. This research shows that under certain conditions, an intent recognition system is more efficient than a plan recognition system. The advantage of intent recognition over plan recognition becomes more apparent in complex domains.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3