Simulating Chalk Art Style Painting

Author:

Qian Wenhua12,Xu Dan1,Guan Zheng1,Yue Kun1,Pu Yuanyuan1

Affiliation:

1. School of Information Science & Engineering, Yunnan University, Kunming 650504, P. R. China

2. School of Automation, Southeast University, Nanjing 210096, P. R. China

Abstract

Different kinds of illustrations and artistic imagery can be generated or simulated through the nonphotorealistic rendering (NPR) technique. However, designing and simulating new NPR artistic styles remains extremely challenging. Chalk art style is a very famous artistic work all over the world, and few algorithms have been put forward to illustrate this style. This paper presents a novel NPR technique which generates a chalk art drawing from a 2D photograph automatically. We aim at obtaining a set of lines surface with coarse appearance and generating stroke textures of the real chalk painting. Firstly, the edge of the source image is extracted by difference-of-Gaussian filter method. To simulate chalk painting’s lines, image diffusion and enhancement techniques are proposed to produce coarse and rough lines. Secondly, we developed an improved line integral convolution and dilation operation methods to produce the chalk stroke texture. Finally, the edge image, stroke texture image and color image will be mapped to another background image to generate the chalk art drawing. Experimental results are presented to show the effectiveness of our method in producing the color chalk stylistic illustrations, and the methods can simulate the characters of the real chalk art painting. The proposed method of this paper will enlarge the research and application fields of NPR. Meanwhile, it provides a tool for the user to create chalk art paintings via computers even without painting skill.

Funder

Research Natural Science Foundation of China

the Research Foundation of Yunnan Province

the Research Foundation of the Educational Department of Yunnan Province

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3