A New Method for Detecting Altered Text in Document Images

Author:

Nandanwar Lokesh1,Shivakumara Palaiahnakote1,Pal Umapada2,Lu Tong3,Lopresti Daniel4,Seraogi Bhagesh2,Chaudhuri Bidyut B.5

Affiliation:

1. Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia

2. Computer Vision and Pattern Recognition Unit, Indian Statistical Institute, Kolkata, India

3. National Key Lab for Novel Software Technology, Nanjing University Nanjing, P. R. China

4. Computer Science & Engineering, Lehigh University, Bethlehem, PA, USA

5. Computer Science & Engineering, Techno India University, Sector 5, Salt Lake, Kolkata

Abstract

As more and more office documents are captured, stored, and shared in digital format, and as image editing software are becoming increasingly more powerful, there is a growing concern about document authenticity. To prevent illicit activities, this paper presents a new method for detecting altered text in document images. The proposed method explores the relationship between positive and negative coefficients of DCT to extract the effect of distortions caused by tampering by fusing reconstructed images of respective positive and negative coefficients, which results in Positive-Negative DCT coefficients Fusion (PNDF). To take advantage of spatial information, we propose to fuse R, G, and B color channels of input images, which results in RGBF (RGB Fusion). Next, the same fusion operation is used for fusing PNDF and RGBF, which results in a fused image for the original input one. We compute a histogram to extract features from the fused image, which results in a feature vector. The feature vector is then fed to a deep neural network for classifying altered text images. The proposed method is tested on our own dataset and the standard datasets from the ICPR 2018 Fraud Contest, Altered Handwriting (AH), and faked IMEI number images. The results show that the proposed method is effective and the proposed method outperforms the existing methods irrespective of image type.

Funder

University of Malaya, Malaysia

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3