A New Date-Balanced Method Based on Adaptive Asymmetric and Diversity Regularization in Person Re-Identification

Author:

Ma Wenjin1,Han Hua1ORCID,Kong Yong1,Zhang Yujin1

Affiliation:

1. Shanghai University of Engineering Science, Shanghai 201600, P. R. China

Abstract

Person re-identification (person re-ID) is a challenging task which aims at spotting same persons among disjoint camera views. It has certainly generated a lot of attention in the field of computer vision, but it remains a challenging task due to the complexity of person appearances from different camera views. To solve this challenging problem, many excellent methods have been proposed, especially metric learning-based algorithms. However, most of them suffer from the problem of data imbalance. To solve this problem, in the paper we proposed a new data-balanced method and named it Enhanced Metric Learning (EML) based on adaptive asymmetric and diversity regularization for person re-ID. Metric learning is important for person re-ID because it can eliminate the negative effects caused by camera differences to a certain extent. But most metric learning approaches often neglect the problem of data imbalance caused by too many negative samples but few positive samples. And they often treat all negative samples the same as positive ones, which can lead to the loss of important information. Our approach pays different attention to the positive samples and negative ones. Firstly, we classified negative samples into three groups adaptively, and then paid different attention to them using adaptive asymmetric strategy. By treating samples differently, the proposed method can better exploit the discriminative information between positive and negative samples. Furthermore, we also proposed to impose a diversity regularizer to avoid over-fitting when the training sets are small or medium-sized. Finally, we designed a series of experiments on four challenging databases (VIPeR, PRID450S, CUHK01 and GRID), to compare with some excellent metric learning methods. Experimental results show that the rank-1 matching rate of the proposed method has outperformed the state-of-the-art by 3.64%, 4.2%, 3.13% and 2.83% on the four databases, respectively.

Funder

the National Nature Science Foundation of China

China Scholarship Council

the Natural Science Foundation of Shanghai, China

the Opening Project of Shanghai Key Laboratory of Integrated Administration Technologies for Information Security

Chen Guang project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A hybrid multilinear-linear subspace learning approach for enhanced person re-identification in camera networks;Expert Systems with Applications;2024-12

2. Robust Person Re-identification through fusion of discriminant and deep Features;2024 8th International Conference on Image and Signal Processing and their Applications (ISPA);2024-04-21

3. Multilinear subspace learning for Person Re-Identification based fusion of high order tensor features;Engineering Applications of Artificial Intelligence;2024-02

4. A Convolutional Neural Network Based on Soft Attention Mechanism and Multi-Scale Fusion for Skin Cancer Classification;International Journal of Pattern Recognition and Artificial Intelligence;2023-11

5. Improving CNN-based Person Re-identification using score Normalization;2023 IEEE International Conference on Image Processing (ICIP);2023-10-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3