Improve Session-Based Recommendation with Triplet Mining and Dynamic Perturbations Graph Neural Networks

Author:

Zhu Jiayi1,Feng Yong1,Zhou Mingliang1ORCID,Xiong Xiancai23,Wang Yongheng4,Xia Yu5,Qiang Baohua6,Mao Qin78,Fang Bin1

Affiliation:

1. College of Computer Science, Chongqing University, No. 174, Shazhengjie, Shapingba, Chongqing 400044, P. R. China

2. Key Laboratory of Monitoring, Evaluation and Early Warning of Territorial, Spatial Planning Implementation, Ministry of Natural Resources, Chongqing 401147, P. R. China

3. Chongqing Institute of Planning and Natural Resources Investigation and Monitoring, Chongqing 401121, P. R. China

4. 8# of Zhejiang Lab, Yuhang District, Hangzhou 311121, P. R. China

5. North Information Control Research Academy Group Co., Ltd., Nanjing, P. R. China

6. Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin 541004, P. R. China

7. Qiannan Normal Coll Nationalities, Coll Comp & Informat, Doupengshan Rd, Duyun, P. R. China

8. Key Laboratory of Complex Systems and Intelligent, Optimization of Guizhou Province, Duyun, P. R. China

Abstract

Session-based recommendation (SBR) emphasizes mining user interests to predict the next click based on recent interactions within sessions. Most current SBR methods suffer from insufficient interactive information problems and fail to distinguish session representations with high similarities, which can neglect the inherent features within sessions. To fill the gap, we propose a triplet mining enhanced graph neural networks (TME-GNN) approach to enhance the recommendation systems by mining structural and inherent information. Technically, we first generate anchor, positive and negative embeddings based on the given session and set a triplet mining task to improve the recommendation task with subtle features by pushing positive pairs close and pulling negative pairs away. Second, to robust the model, we employ a self-supervised auxiliary task by adding dynamic perturbations to the embedding space. We conduct extensive experiments to demonstrate the superiority of our method against other state-of-the-art algorithms. Our implementations are available on the following site https://github.com/Info4Rec/TME-GNN .

Funder

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3