VEHICLE ORIENTATION ANALYSIS USING EIGEN COLOR, EDGE MAP, AND NORMALIZED CUT CLUSTERING

Author:

WU JUI-CHEN1,HSIEH JUN-WEI2,CHEN SIN-YU1,TU CHENG-MIN1,CHEN YUNG-SHENG1

Affiliation:

1. Department of Electrical Engineering, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li 320, Taiwan

2. Dept. of Computer Science and Engineering, National Taiwan Ocean University, No. 2, Beining Rd., Keelung 202, Taiwan

Abstract

This paper proposes a novel approach for estimating vehicles' orientations from still images using "eigen color" and edge map through a clustering framework. To extract the eigen color, a novel color transform model is used for roughly segmenting a vehicle from its background. The model is invariant to various situations like contrast changes, background, and lighting. It does not need to be re-estimated for any new vehicles. In this eigen color space, different vehicle regions can be easily identified. However, since the problem of object segmentation is still ill-posed, only with this model, the shape of a vehicle cannot be well extracted from its background and thus affects the accuracy of orientation estimation. In order to solve this problem, the distributions of vehicle edges and colors are then integrated together to form a powerful but high-dimensional feature space. Since the feature dimension is high, the normalized cut spectral clustering (Ncut) is then used for feature reduction and orientation clustering. The criterion in Ncut tries to minimize the ratio of the total dissimilarity between groups to the total similarity within the groups. Then, the vehicle orientation can be analyzed using the eigenvectors derived from the Ncut result. The proposed framework needs only one still image and is thus very different to traditional methods which need motion features to determine vehicle orientations. Experimental results reveal the superior performances in vehicle orientation analysis.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3