Support Vector Machine Optimized Using the Improved Fish Swarm Optimization Algorithm and Its Application to Face Recognition

Author:

Zhu Wenqiu12,Bao Haixing1,Zeng Zhigao12ORCID,Wen Zhiqiang1,Zhu Yanhui1,Xiang Huazheng1

Affiliation:

1. College of Computer, Hunan University of Technology, Hunan 412000, P. R. China

2. Intelligent Information Perception and Processing Technology, Hunan Province Key Laboratory, P. R. China

Abstract

Support vector machine (SVM) is always used for face recognition. However, kernel function selection is a key problem for SVM. This paper tries to make some contributions to this problem with focus on optimizing the parameters in the selected kernel function to improve the accuracy of classification and recognition of SVM. Firstly, an improved artificial fish swarm optimization algorithm (IAFSA) is proposed to optimize the parameters in SVM. In the improved version of artificial fish swarm optimization algorithm, the visual distance and the step size of artificial fish are adjusted adaptively. In the early stage of convergence, artificial fish are widely distributed, and the visual distance and step size take larger values to accelerate the convergence of the algorithm. In the later stage of convergence, artificial fish gathered gradually, and the visual distance and the step size were given small values to prevent oscillation. Then the optimized SVM is used to recognize face images. Simultaneously, in order to improve the accuracy rate of face recognition, an improved local binary pattern (ILBP) is proposed to extract features of face images. Numerical results show the advantage of our new algorithm over a range of existing algorithms.

Funder

National key R&D project of China

National Natural Science Foundation of China

Open Project Program of the National Laboratory of Pattern Recognition

national natural science foundation of Hunan

the scientific research fund of Hunan provincial education department, china

the education department fund of Hunan province in china

the science and technology planning project of Hunan province in China

the Provincal Joint Fund of Guizhou under Grant and the Open Platform Innovation Foundation of Hunan Provincial Education Department

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3