Affiliation:
1. College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, Changsha, P. R. China
Abstract
This paper presents a multi-objective co-evolutionary population migration algorithm based on Good Point Set (GPSMCPMA) for multi-objective optimization problems (MOP) in view of the characteristics of MOPs. The algorithm introduces the theory of good point set (GPS) and dynamic mutation operator (DMO) and adopts the entire population co-evolutionary migration, based on the concept of Pareto nondomination and global best experience and guidance. The performance of the algorithm is tested through standard multi-objective functions. The experimental results show that the proposed algorithm performs much better in the convergence, diversity and solution distribution than SPEA2, NSGA-II, MOPSO and MOMASEA. It is a fast and robust multi-objective evolutionary algorithm (MOEA) and is applicable to other MOPs.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献