Affiliation:
1. Shanghai University of Engineering Science, Shanghai 201620, P. R. China
Abstract
With the continuous improvement and development of cameras network, surveillance video has become the data source of the column stream, which greatly promotes the development of cross-camera person re-identification (Re-ID). However, supervised learning requires a lot of effort to manually label cross-cameras pairwise training data, which is lack of scalability and practical in actual video surveillance because there is a lack of well-labeled pairs of positive and negative samples under each camera. For addressing these negative effects, we set judgment conditions by using the association ranking method to self-discover positive and negative track-lets pairs of anchors with none of the pairwise ID labels, thereby defining a triplet loss. In order to optimize association loss for learning effective discriminative feature, the triplet loss adds adaptive weights according to the degree of easy-hard samples to generate an Adaptive Weighted Conditional Triplet Loss. Besides, for increasing the accuracy of self-discovering cross-camera anchors independently, which means successfully mine mutually best-matched track-lets and merge them under cross-camera, we use the top-rank from the intra-camera ranking list as a self-matched query sample which can double verify the matched-degree between top-rank. And eventually, we establish a new Association Loss and Self-Discovery Learning (ALSL) model with a complete end-to-end manner. We use three standard datasets, PRID2011, iLIDS-VID and MARS, to train the model and the experimental results prove that ALSL rank-1 is better than some superior video-based unsupervised person Re-ID methods.
Funder
National Nature Science Foundation of China
“Chen Guang” project
Publisher
World Scientific Pub Co Pte Ltd
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献