Affiliation:
1. Department of Computer Science & Technology, Tangshan College, Tangshan 063000, P. R. China
Abstract
Subspace analysis is an effective approach for face recognition. In this paper, a novel subspace method, called kernel supervised discriminant projection (KSDP), is proposed for face recognition. In the proposed method, not only discriminant information with intrinsic geometric relations is preserved in subspace, but also complex nonlinear variations of face images are represented by nonlinear kernel mapping. Extensive experiments are performed to test and evaluate the new algorithm. Experimental results on three popular benchmark databases, FERET, Yale and AR, demonstrate the effectiveness of the proposed method, KSDP.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献