Clustering-Based Transductive Semi-Supervised Learning for Learning-to-Rank

Author:

Rahangdale Ashwini1ORCID,Raut Shital1

Affiliation:

1. Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra 440010, India

Abstract

Learning-to-rank (LTR) is a very hot topic of research for information retrieval (IR). LTR framework usually learns the ranking function using available training data that are very cost-effective, time-consuming and biased. When sufficient amount of training data is not available, semi-supervised learning is one of the machine learning paradigms that can be applied to get pseudo label from unlabeled data. Cluster and label is a basic approach for semi-supervised learning to identify the high-density region in data space which is mainly used to support the supervised learning. However, clustering with conventional method may lead to prediction performance which is worse than supervised learning algorithms for application of LTR. Thus, we propose rank preserving clustering (RPC) with PLocalSearch and get pseudo label for unlabeled data. We present semi-supervised learning that adopts clustering-based transductive method and combine it with nonmeasure specific listwise approach to learn the LTR model. Moreover, each cluster follows the multi-task learning to avoid optimization of multiple loss functions. It reduces the training complexity of adopted listwise approach from an exponential order to a polynomial order. Empirical analysis on the standard datasets (LETOR) shows that the proposed model gives better results as compared to other state-of-the-arts.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A new approach: semisupervised ordinal classification;TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES;2021-05-31

2. Development of semi-supervised multiple-output soft-sensors with Co-training and tri-training MPLS and MRVM;Chemometrics and Intelligent Laboratory Systems;2020-04

3. Improving Query Quality for Transductive Learning in Learning to Rank;IEEE Access;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3