Affiliation:
1. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, P. R. China
2. Department of Computing, The Hong Kong Polytechnic University, Hong Kong, P. R. China
3. School of Computer Science and Technology, Harbin Institute of Technology, Harbin, P. R. China
Abstract
Domain adaptation aims to generalize the classification model from a source domain to a different but related target domain. Recent studies have revealed the benefit of deep convolutional features trained on a large dataset (e.g. ImageNet) in alleviating domain discrepancy. However, literatures show that the transferability of features decreases as (i) the difference between the source and target domains increases, or (ii) the layers are toward the top layers. Therefore, even with deep features, domain adaptation remains necessary. In this paper, we propose a novel unsupervised domain adaptation (UDA) model for deep neural networks, which is learned with the labeled source samples and the unlabeled target ones simultaneously. For target samples without labels, pseudo labels are assigned to them according to their maximum classification scores during training of the UDA model. However, due to the domain discrepancy, label noise generally is inevitable, which degrades the performance of the domain adaptation model. Thus, to effectively utilize the target samples, three specific robust deep softmax regression (RDSR) functions are performed for them with high, medium and low classification confidence respectively. Extensive experiments show that our method yields the state-of-the-art results, demonstrating the effectiveness of the robust deep softmax regression classifier in UDA.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献