Affiliation:
1. College of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
2. School of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo, Henan, P. R. China
Abstract
With the increase in the total population of the society and the continuous increase in the number of trips, the traffic pressures faced by people are increasing. With the development and advancement of computer technology, the emergence of intelligent transportation provides a better way to solve the problem of effectively alleviating traffic pressure and reducing the incidence of traffic accidents. In recent years, intelligent traffic monitoring system, as one of the important branches in the field of intelligent transportation, has also received more and more attention. Among them, video-based moving target recognition technology involves theoretical knowledge in various fields such as artificial intelligence, image processing, pattern recognition and computer vision. It is an important means to realize “safe city” and “smart city” and a key technology for intelligent monitoring. Therefore, the research on human motion target recognition algorithm in complex traffic environment has important theoretical and practical value. In the field of intelligent traffic monitoring, the moving target detection and recognition effect of video images will have certain influence on the classification and behavior understanding of subsequent moving targets. In this paper, the commonly used moving target detection methods are studied first, and the convergence problem of the traditional Adaboost algorithm is improved. An Adaboost algorithm based on adaptive weight update is proposed, and then the support vector machine (SVM) is used. The algorithm identifies the detected moving target. Finally, through simulation experiments on the acquired video images, the results show that the proposed human motion target recognition algorithm based on adaptive weight update Adaboost and SVM has good feasibility and rationality.
Funder
Science and Technology Planning Project Guangdong Province
Official document by Department of Education of Guangdong province
Official document by Department of Education of Guangdong Province
National Natural Science Foundation of China Youth Science Foundation
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献