DNA Computing Model for Satisfiability Problem Based on Hybridization Chain Reaction

Author:

Yin Zhixiang12ORCID,Yang Jing23,Zhang Qiang4,Tang Zhen2,Wang Guoqiang1,Zheng Zhongtuan1

Affiliation:

1. School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, P. R. China

2. School of Mathematics and Big Data, Anhui University of Science and Technology, Anhui, Hefei 232001, P. R. China

3. Faculty of Education, The University of Hong Kong, Pokfulam 999077, Hong Kong Special Administrative Region, P. R. China

4. School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China

Abstract

Satisfiability problem is a famous nondeterministic polynomial-time complete (NP-complete) problem, which has always been a hotspot in artificial intelligence. In this paper, by combining the advantages of DNA origami with hybridization chain reaction, a computing model was proposed to solve the satisfiability problem. For each clause in the given formula, a DNA origami device was devised. The device corresponding to the clause was capable of searching for assignments that satisfied the clause. When all devices completed the search in parallel, the intersection of these satisfying assignments found must satisfy all the clauses. Therefore, whether the given formula is satisfiable or not was decided. The simulation results demonstrated that the proposed computing model was feasible. Our work showed the capability of DNA origami in architecting automatic computing device. The paper proposed a novel method for designing functional nanoscale devices based on DNA origami.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province

Young Talents in Colleges and Universities

CST Forward Innovation

Anhui Postdoctoral Fund

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3