Multi-stream Network for Human-object Interaction Detection

Author:

Wang Chang1ORCID,Sun Jinyu1,Ma Shiwei1,Lu Yuqiu1,Liu Wang1

Affiliation:

1. School of Mechatronic Engineering and Automation, Shanghai University, 200444 Shanghai, P. R. China

Abstract

Detecting the interaction between humans and objects in images is a critical problem for obtaining a deeper understanding of the visual relationship in a scene and also a critical technology in many practical applications, such as augmented reality, video surveillance and information retrieval. Be that as it may, due to the fine-grained actions and objects in the real scene and the coexistence of multiple interactions in one scene, the problem is far from being solved. This paper differs from prior approaches, which focused only on the features of instances, by proposing a method that utilizes a four-stream CNNs network for human-object interaction (HOI) detection. More detailed visual features, spatial features and pose features from human-object pairs are extracted to solve the challenging task of detection in images. Specially, the core idea is that the region where people interact with objects contains important identifying cues for specific action classes, and the detailed cues can be fused to facilitate HOI recognition. Experiments on two large-scale HOI public benchmarks, V-COCO and HICO-DET, are carried out and the results show the effectiveness of the proposed method.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3