Super-Resolution Based on Generative Adversarial Network for HRTEM Images

Author:

Mao Fuqi1,Guan Xiaohan1,Wang Ruoyu2,Yue Wen3

Affiliation:

1. North China University of Technology, Beijing 100144, P. R. China

2. School of Information Science and Engineering, Harbin Institute of Technology (Weihai), Weihai Shandong 264209, P. R. China

3. China University of Geosciences (Beijing), Beijing 100083, P. R. China

Abstract

As an important tool to study the microstructure and properties of materials, High Resolution Transmission Electron Microscope (HRTEM) images can obtain the lattice fringe image (reflecting the crystal plane spacing information), structure image and individual atom image (which reflects the configuration of atoms or atomic groups in crystal structure). Despite the rapid development of HTTEM devices, HRTEM images still have limited achievable resolution for human visual system. With the rapid development of deep learning technology in recent years, researchers are actively exploring the Super-resolution (SR) model based on deep learning, and the model has reached the current best level in various SR benchmarks. Using SR to reconstruct high-resolution HRTEM image is helpful to the material science research. However, there is one core issue that has not been resolved: most of these super-resolution methods require the training data to exist in pairs. In actual scenarios, especially for HRTEM images, there are no corresponding HR images. To reconstruct high quality HRTEM image, a novel Super-Resolution architecture for HRTEM images is proposed in this paper. Borrowing the idea from Dual Regression Networks (DRN), we introduce an additional dual regression structure to ESRGAN, by training the model with unpaired HRTEM images and paired nature images. Results of extensive benchmark experiments demonstrate that the proposed method achieves better performance than the most resent SISR methods with both quantitative and visual results.

Funder

the Beijing Municipal Natural Science Foundation

the Great Wall Scholar Project of Beijing Municipal Education Commission

MOE Planned Project of Humanities and Social Sciences

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3