SEGMENTATION OF MASS IN MAMMOGRAMS USING A NOVEL INTELLIGENT ALGORITHM

Author:

XU WEIDONG1,XIA SHUNREN1,DUAN HUILONG1,XIAO MIN1

Affiliation:

1. The Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China

Abstract

In order to improve the performance of mass segmentation on mammograms, an intelligent algorithm is proposed in this paper. It establishes two mass models to characterize the various masses, and the ones in the denser tissue are represented with Model I, while the ones in the fatty tissue are represented with Model II. Then, it uses iterative thresholding to extract the suspicious area, as well as the rough regions of those masses matching Model II, and applies a DWT-based technique to locate those masses matching Model I, which are hidden in the high gray-level intensity and contrast area. A region growing process restricted by Canny edge detection is subsequently used to segment the rough regions of those masses matching Model I, and finally snakes are carried out to find all the mass regions roughly extracted above. Thirty patient cases with 60 mammograms and 107 masses were used for evaluation, and the experimental result has demonstrated the algorithm's better performance over the conventional methods.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mammogram segmentation using maximal cell strength updation in cellular automata;Medical & Biological Engineering & Computing;2015-04-05

2. Closed Shortest Path in the Original Coordinates with an Application to Breast Cancer;International Journal of Pattern Recognition and Artificial Intelligence;2015-01-04

3. Automatic mass segmentation on mammograms combining random walks and active contour;Journal of Zhejiang University SCIENCE C;2012-09

4. Nucleus and cytoplast contour detector from a cervical smear image;Expert Systems with Applications;2012-01

5. An adaptive region growing algorithm for breast masses in mammograms;Frontiers of Electrical and Electronic Engineering in China;2010-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3