SPEAKER IDENTIFICATION BY AGGREGATING GAUSSIAN MIXTURE MODELS (GMMs) BASED ON UNCORRELATED MFCC-DERIVED FEATURES

Author:

PAL AMITA1,BOSE SMARAJIT1,BASAK GOPAL K.2,MUKHOPADHYAY AMITAVA3

Affiliation:

1. Applied Statistics Division, Indian Statistical Institute, Kolkata, India

2. Theoretical Statistics and Mathematics Division, Indian Statistical Institute, Kolkata, India

3. Interra Information Technologies, Kolkata, India

Abstract

For solving speaker identification problems, the approach proposed by Reynolds [IEEE Signal Process. Lett.2 (1995) 46–48], using Gaussian Mixture Models (GMMs) based on Mel Frequency Cepstral Coefficients (MFCCs) as features, is one of the most effective available in the literature. The use of GMMs for modeling speaker identity is motivated by the interpretation that the Gaussian components represent some general speaker-dependent spectral shapes, and also by the capability of Gaussian mixtures to model arbitrary densities. In this work, we have initially illustrated, with the help of a new bilingual speech corpus, how the well-known principal component transformation, in conjunction with the principle of classifier combination can be used to enhance the performance of the MFCC-GMM speaker recognition systems significantly. Subsequently, we have emphatically and rigorously established the same using the benchmark speech corpus NTIMIT. A significant outcome of this work is that the proposed approach has the potential to enhance the performance of any speaker recognition system based on correlated features.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3