R-GEFS: Condorcet Rank Aggregation with Graph Theoretic Ensemble Feature Selection Algorithm for Classification

Author:

Bania Rubul Kumar1ORCID

Affiliation:

1. Department of Computer Application, North-Eastern Hill University, Tura Campus, Meghalaya 794002, India

Abstract

In the last few years, ensemble learning has received more interest primarily for the task of classification. It is based on the postulation that combining the output of multiple experts is better than the output of any individual expert. Ensemble feature selection may improve the performance of the learning algorithms and has the ability to obtain more stable and robust results. However, during the process of feature aggregation and selection, selected feature subset may contain high levels of inter-feature redundancy. To address this issue, a novel algorithm based on feature rank aggregation and graph theoretic technique for ensemble feature selection (R-GEFS) with the fusion of Pearson and Spearman correlation metrics is proposed. The method works by aggregation of the profile of preferences of five feature rankers as the base feature selectors. Then similar features are grouped into clusters using graph theoretic approach. The most representative feature strongly co-related to target decision classes is drawn from each cluster. The efficiency and effectiveness of the R-GEFS algorithm are evaluated through an empirical study. Extensive experiments on 15 diverse benchmark datasets are carried out to compare R-GEFS with seven state-of-the-art feature selection models with respect to four popular classifiers, namely decision tree, k nearest neighbor, random forest, and support vector machine. The proposed method turns out to be effective by selecting smaller feature subsets with lesser computational complexities and it assists in increasing the classification accuracy.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3