Bayesian Paradigms in Image Processing

Author:

Liu Zhi-Qiang1

Affiliation:

1. Computer Vision and Machine Intelligence Lab. (CVMIL), Department of Computer Science,The University of Melbourne, Parkville, Victoria 3052, Australia

Abstract

A large number of image and spatial information processing problems involves the estimation of the intrinsic image information from observed images, for instance, image restoration, image registration, image partition, depth estimation, shape reconstruction and motion estimation. These are inverse problems and generally ill-posed. Such estimation problems can be readily formulated by Bayesian models which infer the desired image information from the measured data. Bayesian paradigms have played a very important role in spatial data analysis for over three decades and have found many successful applications. In this paper, we discuss several aspects of Bayesian paradigms: uncertainty present in the observed image, prior distribution modeling, Bayesian-based estimation techniques in image processing, particularly, the maximum a posteriori estimator and the Kalman filtering theory, robustness, and Markov random fields and applications.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A WORD POSITION-RELATED LDA MODEL;International Journal of Pattern Recognition and Artificial Intelligence;2011-09

2. Genotypic Differences in Potassium Nutrition in Lowland Rice Hybrids;Communications in Soil Science and Plant Analysis;2009-06

3. OCT4 and NANOG are the key genes in the system of pluripotency maintenance in mammalian cells;Russian Journal of Genetics;2008-12

4. Conclusion;Handwriting Recognition;2003

5. Detection of vehicles from traffic scenes using fuzzy integrals;Pattern Recognition;2002-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3