Affiliation:
1. Computer Vision and Machine Intelligence Lab. (CVMIL), Department of Computer Science,The University of Melbourne, Parkville, Victoria 3052, Australia
Abstract
A large number of image and spatial information processing problems involves the estimation of the intrinsic image information from observed images, for instance, image restoration, image registration, image partition, depth estimation, shape reconstruction and motion estimation. These are inverse problems and generally ill-posed. Such estimation problems can be readily formulated by Bayesian models which infer the desired image information from the measured data. Bayesian paradigms have played a very important role in spatial data analysis for over three decades and have found many successful applications. In this paper, we discuss several aspects of Bayesian paradigms: uncertainty present in the observed image, prior distribution modeling, Bayesian-based estimation techniques in image processing, particularly, the maximum a posteriori estimator and the Kalman filtering theory, robustness, and Markov random fields and applications.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献