Unsupervised Object Cosegmentation Method Devoted to Image Classification

Author:

Merdassi Hager1ORCID,Barhoumi Walid12ORCID,Zagrouba Ezzeddine1ORCID

Affiliation:

1. Université de Tunis El Manar, Institut Supérieur d’Informatique, Research Team on Intelligent Systems in Imaging and Artificial Vision (SIIVA), LR16ES06 Laboratoire de Recherche en Informatique, Modélisation et Traitement de l’Information et de la Connaissance (LIMTIC), 2 Rue Abou Rayhane Bayrouni, 2080 Ariana, Tunisia

2. Université de Carthage, Ecole Nationale d’Ingénieurs de Carthage, 45 Rue des Entrepreneurs, 2035 Tunis-Carthage, Tunisia

Abstract

Rich heterogeneous data provided by social networks can be very big, which imposes considerable challenges for object extraction and image classification. Therefore, the objective of this work is to propose an unsupervised object cosegmentation method that could be notably efficient to improve image classification performance. The main goal of cosegmentation is to extract the salient common objects within each image. To this end, we propose to minimize an energy function based on the Markov Random Field using the saliency detection, while considering linear dependence of generated foreground histograms of the input image collection. In fact, the saliency detection is processed in two steps. In each image, we detect salient objects, by considering appearance similarity and spatial distributions of image pixels. Then, fuzzy quantification is used to correct the belonging of pixels to the foreground objects. Finally, an iterative optimization permits to enhance the final segmentation results. The proposed method has been validated as a preprocessing step for image classification. Indeed, to enhance cosegmentation-based classification performance, we have applied a semi-supervised object classification based on ensemble projection. Qualitative and quantitative evaluations of the proposed cosegmentation and classification techniques on the iCoseg, CDS and Oxford Flowers 17 datasets demonstrate the effectiveness of the proposed framework.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3