Adaptive Image Reconstruction for Defense Against Adversarial Attacks

Author:

Yang Yanan1,Shih Frank Y.12ORCID,Chang I-Cheng3

Affiliation:

1. Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA

2. Department of Computer Science and Information Engineering, Asia University, Taichung 413, Taiwan

3. Department of Computer Science and Information Engineering, National Dong Hwa University, Hualien 974, Taiwan

Abstract

Adversarial attacks can fool convolutional networks and make the systems vulnerable to fraud and deception. How to defend against malicious attacks is a critical challenge in practice. Adversarial attacks are often conducted by adding tiny perturbations on images to cause network misclassification. Noise reduction can defend the attacks; however, it is not suited for all the cases. Considering that different models have different tolerance abilities on adversarial attacks, we develop a novel detecting module to remove noise by adaptive process and detect adversarial attacks without modifying the models. Experimental results show that by comparing the classification results on adversarial samples of MNIST and two subclasses of ImageNet datasets, our models can successfully remove most of the noise and obtain detection accuracies of 97.71% and 92.96%, respectively. Furthermore, our adaptive module can be assembled into different networks to achieve detection accuracies of 70.83% and 71.96%, respectively, on the white-box adversarial attacks of ResNet18 and SCD01MLP images. The best accuracy of 62.5% is obtained for both networks when dealing with the black-box attacks.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3