TSAD: Two-Stage Separable Adversarial Distortion-Based Robust Watermarking Framework for Diffusion Tensor Imaging

Author:

Zheng Long1ORCID,Li Zhi1ORCID,Liu Zhangyu1ORCID,Li Dandan1ORCID,Zhang Li1ORCID,Yue Hong2ORCID,Cheng Fei3ORCID,Mao Qin45ORCID,Wei Xuekai6ORCID,Zhou Mingliang1ORCID

Affiliation:

1. State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guizhou 550025, P. R. China

2. CICT Connected and Intelligent Technologies Co. Ltd., Chongqing 400044, P. R. China

3. Department of Communication and Networking, School of Advanced Technology, Xi’an Jiaotong-Liverpool University, Suzhou 215000, P. R. China

4. College of Computer and Information, Qiannan Normal College of Nationalities, Doupengshan Rd., Duyun 558000, P. R. China

5. Key Laboratory of Complex Systems and Intelligent, Optimization of Guizhou Province, Duyun 558000, P. R. China

6. College of Computer Science, Chongqing University, 174, Shazheng Street, Chonqqing 400044, P. R. China

Abstract

Recent deep learning-based watermarking methods have achieved impressive results. However, they struggle with unknown distortions and often suffer from poor generalization, slow convergence, unstable training, and degraded visual quality in watermarked images. To address the above problems, this paper proposes a two-stage separable adversarial distortion (TSAD)-based robust watermarking algorithm for diffusion tensor imaging (DTI). The algorithm uses a noise-free end-to-end network in the first stage for learning and training DTI images. In the second stage, it fixes the watermark embedding network trained in the first stage, interacts the noise distortion network with the watermark extraction network to perform adversarial training for improving robustness. Experimental results show that our method achieves comparable or better robustness to seen distortions and better robustness to unseen distortions, along with enhanced stability, faster convergence, and improved visual quality in watermarked DTI images.

Funder

NSCF

National Natural Science Foundation of China

Guizhou Science and Technology Plan Project

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3