Age Prediction for Energy-Aware Communication in WSN Using Hybrid Optimization-Enabled Deep Belief Network

Author:

Kumar K. Suresh12ORCID,Vimala P.1

Affiliation:

1. Department of Electronics and Communication Engineering, Annamalai University, Annamalai Nagar, Chidambaram, Tamil Nadu, 608002, India

2. Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Guntur District, Andhra Pradesh, India

Abstract

To perceive the data utilizing sensor nodes, wireless sensor network (WSN) consists of several nodes connected to a wireless channel. However, the sink node, also known as a base station (BS), provides power to the WSN and acts as an access node for a number of the network’s sensor devices. Weather monitoring, field surveillance, and the collection of meteorological data are just a few of the various uses for WSN. The energy of each node directly affects how long a wireless network will last. So, to increase the lifespan of WSN, effective routing is required. Using the suggested Taylor sea lion optimization-based deep belief network (TSLnO-based DBN), the ultimate purpose of this research is to build a method for energy-aware communication in WSN. In the setup stage, cluster head (CH) is chosen using a hybrid optimization technique called ant lion whale optimization (ALWO), which is created by fusing the whale optimization algorithm (WOA) and ant lion optimizer (ALO). It is important to note that CH’s selection criteria are solely based on fitness factors such as energy and distance. The second phase, known as the steady state step, is when the updating of energy and trust takes place. In the prediction phase, the network classifier is trained using a newly created optimization method called TSLnO, and the age of neighbor nodes is predicted by estimating the energy of neighbors using DBN. By combining the Taylor Series and the sea lion optimization (SLnO) method, the proposed TSLnO is produced. The communication/route discovery phase, which occurs in the fourth phase, is where the path through nearby nodes is chosen. The maintenance phase of the route is the fifth phase.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3