Rolling Bearing Composite Fault Diagnosis Method Based on Convolutional Neural Network

Author:

Chen Song1ORCID,Guo Dong-ting1ORCID,Chen Li-ai1ORCID,Wang Da-gui1ORCID

Affiliation:

1. College of Mechanical and Electrical Engineering, Anhui Jianzhu University, Anhui, Hefei 230601, P. R. China

Abstract

Rolling bearing feature extraction and fault identification techniques using deep learning algorithms have been widely adopted in recent years. We proposed a method for diagnosing composite faults in rolling bearings by employing multisensor decision fusion and convolutional neural networks. Different types of bearing faults and eccentricity faults have different fault eigenfrequencies in vibration signals. In the proposed method, vibration and acoustic signals are collected, their characteristics are analyzed, and multisensor data fusion processing is conducted. A neural network is then used to identify the signals containing bearing fault characteristics to diagnose bearing faults at different rotational speeds. We demonstrated the effectiveness of the proposed method by conducting comparative experiments on existing methods.

Funder

Scientific research project of colleges and universities in Anhui Province

Scientific research project of Anhui Jianzhu University

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3