A New Technique for Remote Sensing Image Classification Based on Combinatorial Algorithm of SVM and KNN

Author:

Alimjan Gulnaz123ORCID,Sun Tieli1,Liang Yi3,Jumahun Hurxida3,Guan Yu12

Affiliation:

1. School of Information Science and Technology, Northeast Normal University, Changchun 130117, P. R. China

2. School of Geographical Science, Northeast Normal University, Changchun 130024, P. R. China

3. Department of Electronics and Information Engineering, Yili Normal University, Yining 835000, P. R. China

Abstract

In remote sensing image classification, distance measurements and classification criteria are equally important; and less accuracy of either would affect classification accuracy. Remote sensing image classification was performed by combining support vector machine (SVM) and [Formula: see text]-nearest neighbor (KNN). This was based on the separability of classes using SVM and the spatial and spectral characteristics of remote sensing data. Moreover, a distance formula is proposed as the measure criterion that considers both luminance and direction of the vectors. First, the SVM is trained and the support vectors (SVs) are obtained for each class. In the testing phase, newly tested samples were entered, and average distance between the test samples and SVs for each class are calculated using the distance formula. Finally, decisions are made to classify the test samples into the class with minimal average distance. This procedure is repeated until all test samples are classified. In the combinatorial algorithm, the nearest neighbor classifier is used to classify a testing sample, i.e. the average Euclidean distance between the testing data point to each set of SVs from different categories is calculated and the nearest neighbor classifier identifies the category with minimum distance. The proposed combinatorial algorithm has advantages over the conventional KNN for eliminating the [Formula: see text] parameter selection problem and reducing heavy learning time. A comparison is carried out with SVM, KNN and Spectral Angle Mapper (SAM) classification using ALOS/PALSAR and PSM images, and the effectiveness of the proposed algorithm is demonstrated.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3