Affiliation:
1. Department of Computer Science and Engineering, University of Ioannina, Greece, GR45110, Greece
Abstract
Most of the existing approaches for camera motion detection are based on optical flow analysis and the use of the affine motion model. However, these methods are computationally expensive due to the cost of optical flow estimation and may be inefficient in the presence of moving objects whose motion is independent of the camera motion. We present an effective approach to detect camera motions by considering four trapezoidal regions in each frame and computing the horizontal and vertical translations of those regions. Then, simple decision rules based on the translations of the regions are employed in order to decide for the existence and the type of camera motion in each frame. In this way, three signals are constructed (pan, tilt, zoom) which are subsequently filtered to improve the robustness of the method. Comparative experiments on a variety of videos indicate that our method efficiently detects any type of camera motion (pan, tilt, zoom), even in the case where moving objects exist in the video sequence.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. RO-TextCNN Based MUL-MOVE-Net for Camera Motion Classification;2021 IEEE/ACIS 20th International Fall Conference on Computer and Information Science (ICIS Fall);2021-10-13