Affiliation:
1. K. J. Somaiya Institute of Management Studies and Research, Mumbai, India
2. Annamalai University, Annamalai Nagar, India
Abstract
Singer identification is a challenging task in music information retrieval because of the combined instrumental music with the singing voice. The previous approaches focus on identification of singers based on individual features extracted from the music clips. The objective of this work is to combine Mel Frequency Cepstral Coefficients (MFCC) and Chroma DCT-reduced Pitch (CRP) features for singer identification system (SID) using machine learning techniques. The proposed system has mainly two phases. In the feature extraction phase, MFCC, [Formula: see text]MFCC, [Formula: see text]MFCC and CRP features are extracted from the music clips. In the identification phase, extracted features are trained with Bidirectional Long Short-Term Memory (BLSTM)-based Recurrent Neural Networks (RNN) and Convolution Neural Networks (CNN) and tested to identify different singer classes. The identification accuracy and Equal Error Rate (EER) are used as performance measures. Further, the experiments also demonstrate the effectiveness of score level fusion of MFCC and CRP feature in the singer identification system. Also, the experimental results are compared with the baseline system using support vector machines (SVM).
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献