Coastline Extraction from GF-3 SAR Images Using LKDACM and GMM Algorithms

Author:

Liu Dongsheng1ORCID,Han Ling23

Affiliation:

1. School of Geology Engineering and Geomatics, Chang’an University, Xi’an 710054, P. R. China

2. School of Land Engineering, Chang’an University, Xi’an 710054, P. R. China

3. Key Laboratory of Land Consolidation in Shaanxi Province, Xi’an 710054, P. R. China

Abstract

Coastline detection using a Gaussian Mixture Model (GMM) applied to synthetic aperture radar (SAR) imagery is usually inaccurate due to the inherent noise of SAR data. In addition, the traditional active counter model is sensitive to the initial position of the contour line and requires a large number of iterations to converge to a solution. In this study, we first used the GMM algorithm to segment the SAR images and obtain a coarse land and sea segmentation map. This map is then used as the initial position for a subsequent active contour model. The K distribution was introduced into the local statistical active contour model to better model the SAR image. The Gaussian distribution-based local active contour model and the algorithm detailed in this paper were used to perform coastline extraction experiments on four SAR images. Four GF-3 SAR images with different modes were collected to validate the efficiency of the proposed method. The experimental results show that the coastline extraction methods from SAR images based on the GMM algorithm and the K distribution-based local statistical active contour model (LKDACM) overcame the shortcomings of the traditional active contour model to accurately and quickly detect coastlines, thus enabling the detection of coastline changes.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3