OBJECT-SHAPE RECOGNITION BY TACTILE IMAGE ANALYSIS USING SUPPORT VECTOR MACHINE

Author:

KHASNOBISH ANWESHA1,JATI ARINDAM2,SINGH GARIMA2,KONAR AMIT2,TIBAREWALA D. N.1

Affiliation:

1. School of Bioscience & Engg., Jadavpur University, Kolkata, West Bengal, India

2. Department of Electronics & Telecommunication Engg., Jadavpur University, Kolkata, India

Abstract

The sense of touch is important to human to understand shape, texture, and hardness of the objects. An object under grip, i.e. object exploration by enclosure, provides a unique pressure distribution on the different regions of palm depending on its shape. This paper utilizes the above experience for recognition of object shapes by tactile image analysis. The high pressure regions (HPRs) are segmented and analyzed for object shape recognition rather than analyzing the entire image. Tactile images are acquired by capacitive tactile sensor while grasping a particular object. Geometrical features are extracted from the chain codes obtained by polygon approximation of the contours of the segmented HPRs. Two-level classification scheme using linear support vector machine (LSVM) is employed to classify the input feature vector in respective object shape classes with an average classification accuracy of 93.46% and computational time of 1.19 s for 12 different object shape classes. Our proposed two-level LSVM reduces the misclassification rates, thus efficiently recognizes various object shapes from the tactile images.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3