Affiliation:
1. IIIT Allahabad, Prayagraj, U. P. India
Abstract
Existing dimensionality reduction (DR) techniques such as principal component analysis (PCA) and its variants are not suitable for target class mining due to the negligence of unique statistical properties of class-of-interest (CoI) samples. Conventionally, these approaches utilize higher or lower eigenvalued principal components (PCs) for data transformation; but the higher eigenvalued PCs may split the target class, whereas lower eigenvalued PCs do not contribute significant information and wrong selection of PCs leads to performance degradation. Considering these facts, the present research offers a novel target class-guided feature extraction method. In this approach, initially, the eigendecomposition is performed on variance–covariance matrix of only the target class samples, where the higher- and lower-valued eigenvectors are rejected via statistical analysis, and the selected eigenvectors are utilized to extract the most promising feature subspace. The extracted feature-subset gives a more tighter description of the CoI with enhanced associativity among target class samples and ensures the strong separation from nontarget class samples. One-class support vector machine (OCSVM) is evaluated to validate the performance of learned features. To obtain optimized values of hyperparameters of OCSVM a novel [Formula: see text]-ary search-based autonomous method is also proposed. Exhaustive experiments with a wide variety of datasets are performed in feature-space (original and reduced) and eigenspace (obtained from original and reduced features) to validate the performance of the proposed approach in terms of accuracy, precision, specificity and sensitivity.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Anomaly detection on MNIST stroke simulation dataset;2022 9th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI);2022-10-06
2. Target-class guided sample length reduction and training set selection of univariate time-series;Applied Intelligence;2022-07-13
3. Learning target class eigen subspace (LTC-ES) via eigen knowledge grid;Turkish Journal of Electrical Engineering and Computer Sciences;2022-01-01