Affiliation:
1. Computer Engineering & Automatic Control Department, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
2. Depto. de Informática, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
Abstract
This paper presents an efficient IrisCode classifier, built from phase features which uses AdaBoost for the selection of Gabor wavelets bandwidths. The final iris classifier consists of a weighted contribution of weak classifiers. As weak classifiers we use three-split decision trees that identify a candidate based on the Levenshtein distance between phase vectors of the respective iris images. Our experiments show that the Levenshtein distance has better discrimination in comparing IrisCodes than the Hamming distance. Our process also differs from existing methods because the wavelengths of the Gabor filters used, and their final weights in the decision function, are chosen from the robust final classifier, instead of being fixed and/or limited by the programmer, thus yielding higher iris recognition rates. A pyramidal strategy for cascading filters with increasing complexity makes the system suitable for real-time operation. We have designed a processor array to accelerate the computation of the Levenshtein distance. The processing elements are simple basic cells, interconnected by relatively short paths, which makes it suitable for a VLSI implementation.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献